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ABSTRACT 

 
At the blood–brain barrier (BBB), the superfamily of ATP-binding cassette (ABC) transporters includes the 
ABCB1 subfamily corresponding to P-glycoprotein (P-gp), the ABCC subfamilies of multidrug resistance-
associated proteins (MRPs), and the ABCG2 subfamily corresponding to breast cancer resistance protein (BCRP). 
These efflux transporters are located mainly in the endothelial cells forming the BBB and prevent the entry of 
xenobiotics into the brain. Since psychotropics act on target sites of the central nervous system (CNS) in the brain, 
it is very important to know these transporters’ roles at the BBB and to determine the brain drug concentrations at 
the targeted sites of the CNS. However, there is little information on human brain concentrations of psychotropics. 
Recent studies have demonstrated that brain concentrations of many psychotropics are significantly higher in 
P-gp-knockout mice than in wild-type mice. This result implies that P-gp may be a key player in the regulation of 
brain psychotropic pharmacokinetics and possibly causes the P-gp-mediated drug interaction at the BBB. In this 
review, we discuss the current findings concerning the role of drug transporters on the concentrations of 
psychotropics in the brain and summarize the available in vivo studies related to psychotropics. 
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INTRODUCTION 

 
Since the central nervous system (CNS) is separated 
from peripheral blood circulation by physiological 
barriers, e.g., the blood–brain barrier (BBB), the CNS 
is not directly exposed to drugs in systemic circulation 
[1-4]. Although many psychotropic medications reach 
specific sites within the CNS via the circulatory 
system (Figure 1), the precise concentrations of the 
psychotropic drugs in the CNS cannot be determined 
in each patient [5]. Therefore, ensuring drug delivery 
to the CNS and achieving appropriate drug concen-
trations in the CNS are the final targets of rational 
psychiatric pharmacotherapy. The BBB is composed 
of the tight junctions of capillary endothelial cells 
attached to the brain. It protects the CNS from 

potentially toxic substances by limiting the para-
cellular movement of endogenous and exogenous 
compounds [6,7]. The endothelial cells of the BBB 
contain numerous membrane transporters related to 
the influx or efflux of various important therapeutic 
drugs [6-8]. Previous reports suggest that the 
expression and activity of drug transporters at the 
BBB limit the entry of psychotropics and regulate 
their effects and toxicity [9]. 
In recent years, although many drug transporters, 
including the ATP-binding cassette (ABC) protein 
family and the solute carrier (SLC) family, have been 
identified at the BBB [8-11], one focus of study has 
been the role of the superfamily of ABC transporters 
in drug penetration into the brain [12]. The sub-
families at the BBB include the ABCB1 subfamily 
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corresponding to P-glycoprotein (P-gp), the ABCC 
subfamilies of multidrug resistance-associated proteins 
(MRPs), and the ABCG2 subfamily corresponding to 
breast cancer resistance protein (BCRP) [12]. These 
transporters are responsible for an efflux pump to 
prevent toxic substrates and many therapeutic medica-
tions from entering the brain [12]. Of these efflux 
transporters, P-gp has been established as a key factor 
at the BBB [13]. Multiple studies have reported the 

presence of P-gp at the BBB [14,15], which is 
associated with the clinical response of many 
CNS-acting drugs as psychotropics [8,9,16-18]. In 
addition, several studies of drug interactions in 
humans have found that P-gp-mediated transport 
activity is modulated by its own inhibition and 
induction under polypharmacy, which can affect drug 
pharmacokinetics [19,20]. 

 

 
 

Fig. 1. Drug Delivery of Psychotropics 
 

However, in the case of clinically significant drug 
interactions at the BBB, it is difficult to tell if these 
interactions are based on pharmacokinetic or pharma-
codynamic changes. For example, although the 
interaction between quinidine and loperamide is 
known to induce respiratory depression as a severe 
side effect, it has been reported that there was no 
change in the loperamide plasma concentrations [21]. 
The mechanism of this interaction may be an 
elevation in the brain concentrations of loperamide 
caused by quinidine coadministration. It has also been 

reported that, in P-gp knock-out mice models, the 
CNS concentrations of loperamide were increased by 
10- to 100-fold [14]. Since many psychotropics are 
known as P-gp substrates, a greater understanding of 
the functional changes in P-gp activity at the BBB is 
needed in clinical practice, as this will enable more 
accurate prediction of the actual therapeutic response 
to psychotropics. In this review, we describe the role 
of drug transporters, mainly P-gp, on psychotropic 
penetration of the BBB. 
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INFLUENCE OF P-GP 
IN ANIMAL STUDIES 

 
The role of P-gp at the BBB has frequently been 
studied using the mdr1a (encoding P-gp)-knockout 
mouse (mdr1a(-/-) mouse) [22]. This mouse model is 
a unique and valuable pharmacologic tool in 
examining the in vivo P-gp function at the BBB. Two 
types of mdr1a and mdr1b (encoding P-gp) were 
detected in this mouse study, each of which showed 
different tissue distribution [23]. Recent studies have 
established that only P-gp-based mdr1a is expressed at 
the BBB, not mdr1b [9,24,25]. Accordingly, a model 
study using the mdr1a(-/-) mouse has clearly 
demonstrated a lack of P-gp at the BBB. Many 
psychotropics have been investigated using this 
knockout mouse model, and dramatic differences in 
the brain concentrations of psychotropics between 
knockout and wild-type mice have been consistently 
confirmed [9,16,26,27]. For example, the brain 
concentrations of risperidone and its active metabolite 
9-hydroxyrisperidone (paliperidone) were reported to 
be at least 10 times greater in knockout mice than in 
wild-type mice [28]. These findings suggest that P-gp 
is a key determinant of the brain pharmacokinetics of 
various psychotropics. 
Interestingly, in this study, no significant differences 
in the plasma concentrations of risperidone and 
paliperidone were found between wild-type and 
knockout mice (1.4-fold for risperidone, 1.1-fold for 
paliperidone, respectively) [28]. This indicates that 
increased brain concentrations of P-gp-associated 
psychotropics independently occur irrespective of 
changes in the blood concentrations of the drugs, 
which may potentially cause CNS-related side effects. 
Furthermore, despite the fact that P-gp is expressed in 
the liver, intestine and kidney as well as the BBB [11], 
the discrepancy in brain and blood concentrations of 
the drugs implies that these P-gp psychotropics have 
different tissue distributions and organ transitions in 
relation to whole body drug pharmacokinetics. 
Therefore, these studies demonstrate the significant 
influence of P-gp on CNS pharmacotherapy, and it 
would be useful to know to what extent P-gp activity 
is pathophysiologically modulated under polyphar-
macy with possibly interacting drugs. 
 

P-GP AND POSITION EMISSION 
TOMOGRAPHY (PET) STUDY 

 
In recent clinical studies, positron emission tomo-
graphy (PET) was used to study the human activity of 
P-gp at the BBB. Since a radioligand [11C]-verapamil 

has been shown to be effectively transported by P-gp 
at the BBB in humans, this substrate is a suitable 
probe for clinical PET study to evaluate P-gp function 
[29]. Langer O et al. [30] reported that the enhanced 
P-gp activity in PET studies using R-[11C]-verapamil 
might contribute to drug resistance in some patients 
with treatment-refractory epilepsy. In addition, de 
Klerk OL et al. [31] showed that patients with chronic 
schizophrenia had significantly decreased [11C]-vera-
pamil uptake in the brain compared with healthy 
volunteers, and the decrease of [11C]-verapamil 
uptake correlated with increased P-gp activity. These 
results suggest that overexpression of P-gp in brain 
tissue may limit the penetration of CNS drugs to their 
sites of action and may cause pharmacoresistance. 
Another human study using PET [32] showed that the 
P-gp inhibitor cyclosporine A significantly increased 
the brain concentrations of [11C]-verapamil in healthy 
subjects. Therefore, PET studies using [11C]-vera-
pamil may provide a clinical indicator of the P-gp 
activity of psychotropics and drug–drug interactions 
associated with P-gp at the BBB. 
 

INFLUENCE OF ABCB1 POLYMORPHISM 
ON PSYCHOTROPICS 

 
Polymorphisms in genes encoding transport proteins 
may play an important role in the interindividual 
variability of drug pharmacokinetics and therapeutic 
response. Many researchers have studied single 
nucleotide polymorphisms (SNPs) or haplotypes to 
determine their frequency and to establish their impact 
on transport functions [33]. 
P-gp is encoded by the ABCB1 genes. To date, more 
than 50 SNPs have been identified [34]. One of these, 
C3435T, has been associated with the expression and 
function of P-gp in humans. Carriers homozygous for 
this polymorphism (TT) showed more than a 2-fold 
lower ABCB1 expression than the CC group, which 
resulted in high plasma concentrations of substrate 
drugs [35]. Many studies have reported associations 
between functional SNPs in ABCB1 and the 
therapeutic response to psychotropics. Tricyclic 
antidepressants (nortriptyline, amitriptyline, and 
imipramine) are P-gp substrates [36,37]. In patients 
with a mutated P-gp gene C3435T (TT group), P-gp 
activity was reduced, and the incidence of orthostatic 
hypotension was significantly increased as a result 
[38]. Furthermore, such selective serotonin reuptake 
inhibitors as fluvoxamine and paroxetine are both 
inhibitors and substrates of P-gp [39,40], and 
therapeutic response to these drugs can be affected by 
P-gp gene polymorphism. In fact, recent pharmaco-



Role of transporters on psychotropics Yumiko Akamine et al. 
 
 

11 

genetic research has demonstrated that responses to 
fluvoxamine and paroxetine were significantly affect-
ed by ABCB1 polymorphisms, including C3435T 
genotypes [34,41]. The fluvoxamine plasma concen-
trations were significantly higher in the 3435TT group 
compared to the 3435CC group [41]. In the case of 
paroxetine treatment, patients with the haplotype 
combination 3435C-2677G-1236T of the ABCB1 
gene showed minimal improvement in their Hamilton 
Rating Scale for Depression scores [34]. In addition, 
patients with the 3435CC genotype had significantly 
lower dose-normalized clozapine concentrations than 
CT or TT patients [42]. This study suggests that 
3435CC patients require higher clozapine doses to 
achieve the same plasma concentrations as CT or TT 
patients, and ABCB1 genotyping should be considered 
as a novel strategy that could improve drug use. 
However, since there is little information on the 
relationship between ABCB1 polymorphism and 
clinical efficacy, prospective clinical trials will be 
needed to clarify this relationship. 
 

OTHER ABC TRANSPORTERS AND 
SOLUTE CARRIER (SLC) TRANSPORTERS 

 
In recent years, the other ABC efflux transporters 
(MRPs and BCRP) have been thought to affect drug 
penetration into the brain (Figure 1), although there is 
yet little information on whether these transporters 
affect the pharmacokinetics of psychotropics. MRPs 
expressed at the BBB play some role in xenobiotic 
elimination at the BBB and the brain-cerebrospinal 
fluid barrier [43-45]. The MRP subtypes at the BBB 
consist of MRP1, MRP4 and MRP5 (MRP2?). It has 
been reported that citalopram is a substrate of MRP1, 
and that MRP1 polymorphism affected citalopram 
clinical response [46]. Because 4002G>A MRP1 
genotype was associated with greater expression and 
function of MRP1, patients with the AG or AA 
genotype receiving citalopram were 5.8 times more 
likely to experience remission at 8 weeks than patients 
with the GG genotype [46].  
A recent study also found that BCRP plays an 
important role in xenobiotic elimination at the BBB 
and that the brain concentrations of BCRP substrates 
were higher in BCRP-knockout mice [47]. So far, an 
in vitro study has suggested that risperidone and 
clozapine are BCRP inhibitors [48]. However, in the 
case of commonly prescribed drugs, except for 
psychotropics, there is often overlap in substrates of 
ABC transporters among P-gp, BCRP and MRPs 
[49,50]. Thus, further evidence is needed to evaluate 

the extents of their effects on the pharmacokinetics of 
these drugs. 
Additionally, several solute carrier (SLC) drug 
transporters are expressed at the BBB, including 
organic anion-transporting polypeptide (OATP) 1A2, 
OATP2B1, and organic anion transporter 3 (OAT3) 
(Figure 1) [51]. These transporters are localized at the 
luminal and abluminal membranes of brain capillary 
endothelial cells and regulate the delivery of CNS 
drugs to systemic circulation [8,51]. Methotrexate 
(MTX), a folate antimetabolite, is known as an 
OATP1A2 substrate [52], and methotrexate chemo-
therapy has been reported to cause severe CNS 
toxicity [53]. SLCO1A2 (encoding OATP1A2) 
polymorphism may account for interindividual 
differences in MTX treatment response and MTX-
induced toxicities [52]. Therefore, OATP1A2 may be 
another important factor in determining the response 
to drugs that act on the CNS, including psychotropics. 
However, we may need to wait for the results of future 
studies, because the substrate specificity of OATPs 
with regard to psychotropics is still being investigated. 
 

CONCLUSIONS 
 
We have shown that P-gp affects the efficacy and side 
effects of psychotropics. P-gp plays a key role not 
only in the gastrointestinal tract but also at the BBB. 
As previously described, it appears to be very 
important to estimate the effects of P-gp, especially 
with regard to drug transport to the CNS, which is 
closely tied to drug efficacy. Understanding the 
competitive action among and direct inhibitory effects 
of P-gp substrates and modulators will enable us to 
more correctly predict potential drug–drug interactions 
and establish safer and more effective dosage 
schedules. 
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